

Chongqing University of Technology

Self-Attentive Interest Retrieval Recommender

Min Wu School of Software Engineering Xi'an Jiaotong University Xi'an, China e-mail: epouxdefutaba@stu.xjtu.edu.cn Chen Li*

School of Software Engineering Xi'an Jiaotong University Xi'an, China e-mail: lynnlc@126.com Lihua Tian

School of Software Engineering Xi'an Jiaotong University Xi'an, China e-mail: lhtian@xjtu.edu.cn

CCET 2022 Code: None

Reported by liang li

Details:

- Sequential recommender uses metadata such as item category to capture user's multi-interests. But this method will not reach its expectation due to item's long-tail property. This property will result a large constant of category cannot be effectively activated by the lack of interaction records.
- Another drawback is that may also lead to over-parameterization caused by the massive categories.

Problem Statement

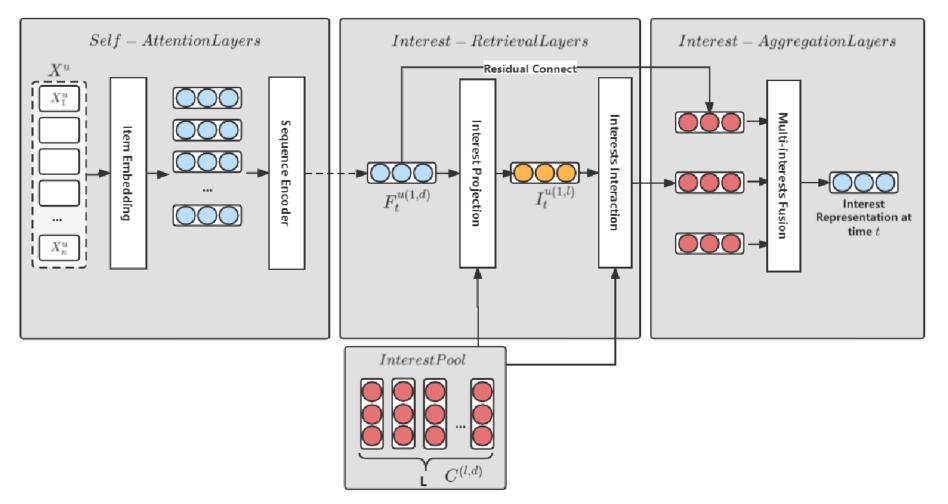
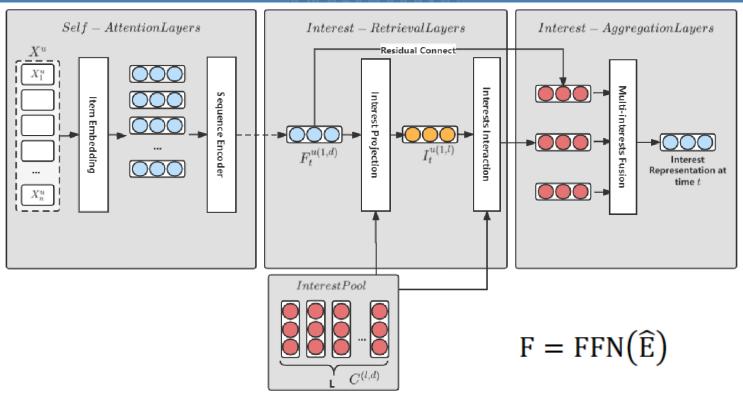
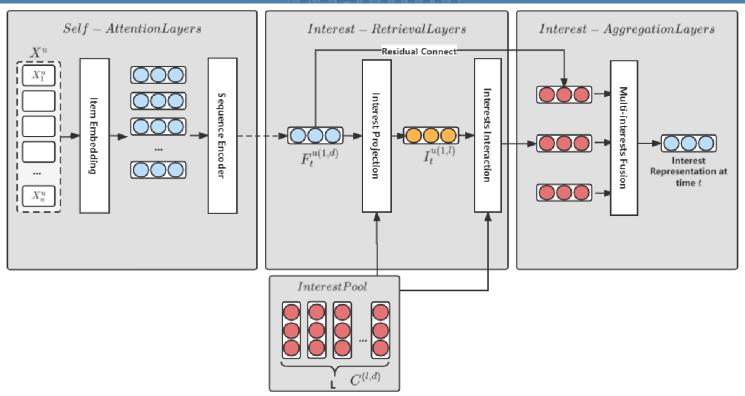


Figure 1. Overall framework of SAIR

$$X^{(u)} = [x_1^{(u)}, x_2^{(u)} \dots x_n^{(u)}]$$

$$H_{id} \in \mathbb{R}^{(MxD)}, H_{cate} \in \mathbb{R}^{(TxD)}, H_{pos} \in \mathbb{R}^{(NxD)}.$$




Figure 1. Overall framework of SAIR

 $E^{(u)} = H_{id}(X^{(u)}) + H_{cate}(X^{(u)}) + H_{pos}(X^{(u)}).$ (1)

 $\widehat{E} = \operatorname{softmax}\left(\frac{QK}{\sqrt{D}}\right)V \qquad (2) \quad \operatorname{LayerNorm}(\operatorname{Linear}\left(\operatorname{Relu}\left(\operatorname{Dropout}(\operatorname{Linear}(\cdot)\right)\right)). \quad (3)$

 $\mathbf{C}_{\mathbf{a}} = \mathbf{F} \cdot \mathbf{C}^{\mathrm{T}} \,.$

(4)
$$I_k = \text{Embedding}(C_k, C)$$
 (7)

$$\widehat{C_a} = \text{Attention}(C_a W^Q, C_a W^K, C_a W^V). \quad (5)$$

 $C_{k} = top(\widehat{C_{a}}, k).$ (6)

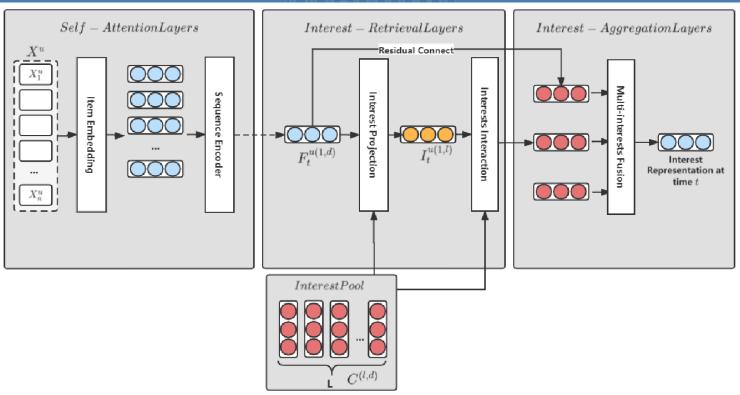


Figure 1. Overall framework of SAIR

$$\begin{split} & \widehat{I}_k^{\widehat{t}} = \text{Residual}(I_k^t, \ F^t) = \left[I_k^{t(1)} + \ F^t, \ I_k^{t(2)} + \\ F^t, \dots, I_k^{t(K)} + \ F^t\right]. \end{split}$$

(8)
$$e_{u}^{t} = \sum_{i=1}^{k} W_{i}^{t} \cdot I_{a}^{t(i)}$$
 (10)

$$W_{i}^{t} = \frac{\exp{(C_{a}^{i})}}{\sum_{j}^{C_{k}} \exp{(C_{a}^{j})}}, i \in [1, k].$$
(9)

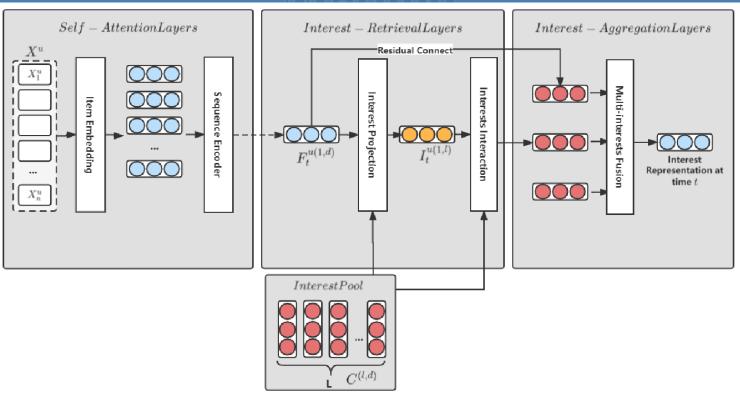


Figure 1. Overall framework of SAIR

$$P(x_u^t | x_u^1, \dots, x_u^{t-1}) = \langle Item_{label}, e_u^t \rangle.$$
(11)

$$\mathcal{L}_{ce} = -\sum_{X^{u} \in X} \sum_{t \in [1,2,\dots,N]} \left[\log(\langle \text{Item}_{lab}, e_{u}^{t} \rangle) + \log(1 - \langle \text{Item}_{neg}, e_{u}^{t} \rangle) \right].$$
(12)

$$\mathcal{L}_{d} = \frac{1}{2} (\|Z\|_{F}^{2} - \|diag(Z)\|_{2}^{2})$$

$$Z = \frac{1}{D} (C - \overline{C})(C - \overline{C})^{T}$$

$$\mathcal{L} = \mathcal{L}_{\rm ce} + \mathcal{L}_{\rm d},$$

2)

TABLE I.STATISTICS OF THE DATASETS

Dataset	ML-1m	ML-20m	Anime	
#User	6041	138494	73515	
#Items	3883	26745	11200	
#Actions	1000038	20000263	7813737	
#Category	18	21	82	
#Avg.Length	163.4	144.41	96.51	
#Sparsity	95.58	99.46	99.05	

 TABLE II.
 Overall Comparison of Performance on NDCG@K and HR@K(%). The Best Performance and Second Performance are Denoted in Bold and Underlined Respectively

Dataset		Metrics	BERT4Rec	SASRec	Caser	LightSANs	SAIR	.Impv
ML-1M	NDCG	@20	0.5996	0.6112	0.5879	<u>0.6145</u>	0.6213	1.1%
		@10	0.5779	<u>0.5968</u>	0.5754	0.5945	0.6088	2%
		@5	0.5466	0.5582	0.541	0.5621	0.5732	1.9%
	HR	@20	0.8664	0. <u>9035</u>	0.8724	0.8828	0.9107	0.8%
		@10	0.7811	<u>0.827</u>	0.7906	0.8046	0.8334	0.8%
		@5	0.6843	<u>0.7461</u>	0.6889	0.7045	0.754	1%
ML-20M	NDCG	@20	0.7539	0.7567	0.7442	<u>0.7893</u>	0.8176	3.6%
		@10	0.7433	0.7496	0.7378	<u>0.782</u>	0.8126	3.9%
		@5	0.723	0.7298	0.7059	<u>0.7618</u>	0.798	4.7%
	HR	@20	0.9485	0.9622	0.943	<u>0.9889</u>	0.9908	0.1%
		@10	0.9058	0.9349	0.9254	<u>0.9641</u>	0.9713	0.7%
		@5	0.8445	0.8746	0.8816	<u>0.9091</u>	0.9269	1.9%
Anime	NDCG	@20	0.5799	0.7803	0.7537	<u>0.8348</u>	0.8532	2.2%
		@10	0.5611	0.7753	0.7363	0.8305	0.8501	2.4%
		@5	0.5172	0.7601	0.7294	<u>0.8196</u>	0.8413	2.6%
	HR	@20	0.9229	<u>0.9695</u>	0.9535	0.9647	0.9854	1.6%
		@10	0.8494	<u>0.95</u>	0.9417	0.9481	0.9734	2.4%
		@5	0.7152	0.9043	0.8839	<u>0.9146</u>	0.9466	3.5%

- 1.5

- 1.0

0.5

- 0.0

- -0.5

Relevance Score

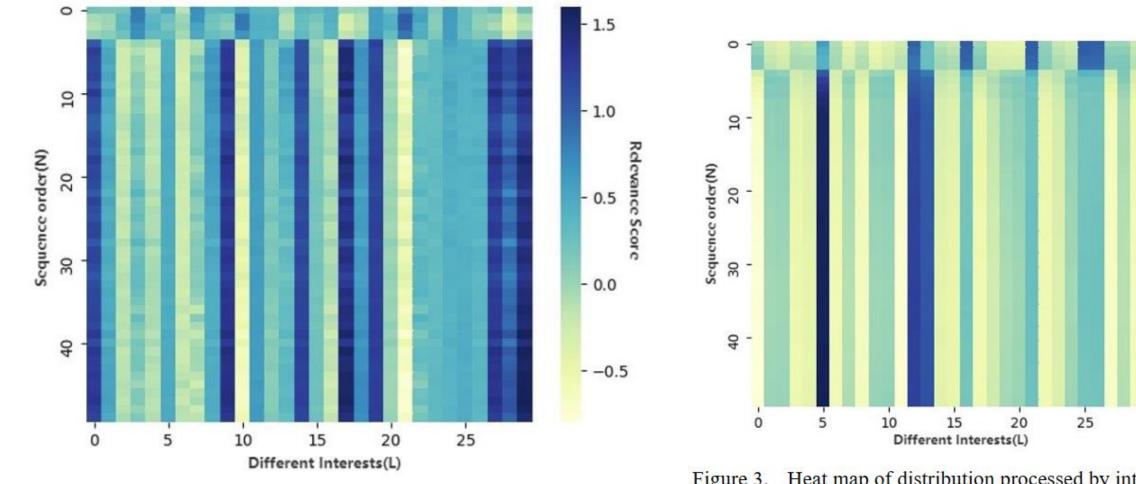
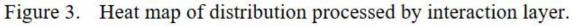



Figure 2. Heat map of distribution matrix.

Thanks